Denominator vectorsr and compatibility degrees in cluster algebras of finite type

نویسندگان

  • Cesar Ceballos
  • Vincent Pilaud
چکیده

We present two simple descriptions of the denominator vectors of the cluster variables of a cluster algebra of finite type, with respect to any initial cluster seed: one in terms of the compatibility degrees between almost positive roots defined by S. Fomin and A. Zelevinsky, and the other in terms of the root function of a certain subword complex. These descriptions only rely on linear algebra, and provide simple proofs of the known fact that the d-vector of any non-initial cluster variable with respect to any initial cluster seed has non-negative entries and is different from zero. Résumé. Nous présentons deux descriptions élémentaires des vecteurs dénominateurs des algèbres amassées de type fini pour tout amas initial: l’une en termes de degrés de compatibilitié entre racines presque positives définis par S. Fomin et A. Zelevinsky, et l’autre en termes de la fonction racine d’un certain complexe de sous-mots. Ces descriptions ne reposent que sur l’algèbre linéaire et fournissent des preuves simples du fait (connu) que le d-vecteur de toute variable d’amas, qui n’est pas dans l’amas initial, a des entrées positives ou nulles et est différent du vecteur nul.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denominator Vectors and Compatibility Degrees in Cluster Algebras of Finite Type

We present two simple descriptions of the denominator vectors of the cluster variables of a cluster algebra of finite type, with respect to any initial cluster seed: one in terms of the compatibility degrees between almost positive roots defined by S. Fomin and A. Zelevinsky, and the other in terms of the root function of a certain subword complex. These descriptions only rely on linear algebra...

متن کامل

Cluster automorphisms and compatibility of cluster variables

In this paper, we introduce a notion of unistructural cluster algebras, for which the set of cluster variables uniquely determines the clusters. We prove that cluster algebras of Dynkin type and cluster algebras of rank 2 are unistructural, then prove that if A is unistructural or of Euclidean type, then f : A → A is a cluster automorphism if and only if f is an automorphism of the ambient fiel...

متن کامل

An Efficient Strain Based Cylindrical Shell Finite Element

The need for compatibility between degrees of freedom of various elements is a major problem encountered in practice during the modeling of complex structures; the problem is generally solved by an additional rotational degree of freedom [1-3]. This present paper investigates possible improvements to the performances of strain based cylindrical shell finite element [4] by introducing an additio...

متن کامل

Diagrammatic Description of c-vectors and d-vectors of Cluster Algebras of Finite Type

We provide an explicit Dynkin diagrammatic description of the c-vectors and the d-vectors (the denominator vectors) of any cluster algebra of finite type with principal coefficients and any initial exchange matrix. We use the surface realization of cluster algebras for types An and Dn, then we apply the folding method to Dn+1 and A2n−1 to obtain types Bn and Cn. Exceptional types are done by di...

متن کامل

A Graph Theoretic Expansion Formula for Cluster Algebras of Classical Type

In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that arise in most cluster algebras of finite type with bipartite seed. In particular, we provide a family of graphs such that a weighted enumeration of their perfect matchings encodes the numerator of the associated Laurent polynomial while decompositions of the graphs correspond to the denominator. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013